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Abstract 
 
To capture the complexity of a water resources system, synthetic data generation is an essential 
component. Frequently, the data generation is done on an annual basis and disaggregated to 
smaller time scales. A generalised disaggregation framework is presented to generate seasonal 
stream-flows from any annual autoregressive process. A new periodic disaggregation scheme is 
proposed for further disaggregation into sub-seasonal flows from seasonal flows generated with a 
periodic autoregressive (PAR) model of any order. The new model preserves the first and second 
moments and has been applied to the Ganges river at Farakka in India for generation of decadal 
(10-day) flows from monthly flows; the 10-day period being the discrete time interval identified 
in the Ganges Water Treaty. The results demonstrate that the proposed coupled modelling 
scheme works very well and provides a flexible choice in synthetic hydrology. 
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1. Introduction 
 
Synthetic data is widely used in water resource systems planning and management all 
over the world, especially for reservoir sizing and operation. Planning activities based on 
observed historic data, which suffers from sampling variability, and optimisation or 
simulation models of deterministic type are often of limited use for detailed study of the 
operation and performance of a complex water system, such as the Ganges river system, 
which is inherently stochastic in nature. To provide insight and guidance on how systems 
should be designed and operated, stochastic simulation or optimisation needs to be 
carried out. Stochastic models, which use synthetic data as inputs, are most flexible, 
powerful and widely used tools for planning and analysis of complex water resources 
systems (Loucks et al., 1981). Stochastic simulation models, in particular, can deal with 
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a lot of complexities associated with systems planning and are able to solve highly non-
linear relationships and constraints. Stochastic simulation models need generation of 
input data, which are usually of seasonal time resolution, with appropriately constructed 
statistical models of the system.  
 
Seasonal input data, such as monthly stream-flow, can be generated either using a 
seasonal time series model directly, or using an annual time series model coupled with a 
disaggregation model. However, for generation of sub-seasonal (10-day) data from 
seasonal (monthly) data, disaggregation models are mandatory. Seasonal models such as 
Seasonal Autoregressive Integrated Moving Average (Box et al., 1994) model and 
Periodic Autoregressive (PAR, Hipel and McLeod, 1994) model have been widely used 
for forecasting and generation of hydrologic variables. McLeod and Hipel (1978) and 
Thompstone et al. (1987) have demonstrated that these models are capable of preserving 
both short- and long-term important historical statistics of hydrologic variables, 
particularly stream-flow records. Recently, Mondal and Wasimi (2005a) have developed 
a PAR model for monthly forecasting and generation of the Ganges river flow at Farakka 
in India. They generated 200 synthetic traces of historic length to demonstrate that their 
model is capable of preserving important theoretical and historical statistics. However, 
the model cannot be used directly in water resources planning for the Ganges delta 
within Bangladesh since its share of the Ganges water during the months of January-May 
is on decadal (10-day) basis as per the latest Ganges Water Treaty (GWT) of 1996. 
Direct development of a decadal model is constrained by the fact that decadal data for 
the whole year is not available. Therefore, a suitable mathematical framework is needed 
to generate decadal flows from already generated monthly flows. It is worth mentioning 
that the discharge data of the Ganges are considered as classified information by both 
Bangladesh and Indian governments because of long time disputes over sharing of the 
Ganges water, and as such, the data are not available at the measured one-day time 
resolution. The data available to the authors are monthly mean values derived from daily 
values. Fortunately, decadal data for five months (January-May) only are available in a 
research report by Colombi (1999), and another two months (November-December) 
could be collected through other sources. These data have been used in this study to 
disaggregate each month’s flow into its three decadal flows.  
 
The paper is organised such that, in next Section, we briefly review the disaggregation 
models used for river-flow generation. We also describe the mathematical procedures of 
seasonal to sub-seasonal disaggregation. Thereafter, we apply the disaggregation model 
to the Ganges river for generation of decadal flows from monthly flows. We draw some 
conclusions of the study in the final Section. 
 
2. Disaggregation models 
 
2.1 Background information 
 
Disaggregation is a mathematical technique for down-scaling coarser temporal or spatial 
levels into finer levels. Valencia and Schaake (1973) introduced a disaggregation model 
(hereafter referred to as VS model) that has become popular in stochastic hydrology (Tao 
and Delleur, 1976; Srikanthan, 1979). Among the attributes of this model, which is also 
known as the basic model, are the preservation of the first- and second-order moment 
properties at both the coarser and finer levels and the additive property: The aggregation 
of the generated finer level values always yields the coarser level value. However, the 
model proceeds in such a way that although the data inside a given coarser level preserve 
the statistics for all levels of aggregation, they are linked with the past finer level only 
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through the statistics at the coarser level (Mejia and Rousselle, 1976). For example, the 
correlation coefficient between the last season and the first season of consecutive years 
is not preserved explicitly. 
 
Mejia and Rousselle (1976, hereafter referred to as MR) attempted to overcome this 
shortcoming by including an extra term in the original VS model. However, Lane (1982) 
discovered an inconsistency in the extended MR model and found that none of the 
intended moments is preserved if MR parameter estimation equations are used. Salas et 
al. (1988) mentioned that the problem of an inconsistent casual structure in the basic VS 
model is not corrected by the additional term in the extended MR model, and the 
problem of excessive number of parameters ensues. Lane (1982), Stedinger and Vogel 
(1984), Lane and Frevert (1990), and Lin (1990a, b) widely discussed the impact of this 
moment inconsistency and suggested possible remedies. 
 
Hoshi and Burges (1979) also attempted to overcome the shortcoming of the basic VS 
model by simultaneously disaggregating two successive annual events. However, their 
disaggregation scheme introduces some distortion between the summed inverse 
transformed individual seasonal flows and the annual amount from which they are 
disaggregated. In a later discussion on disaggregation techniques, Hoshi and Burges 
(1980) expressed their opinions on Lane’s model as the best overall model, and 
recommended it for general use. 
 
Santos and Salas (1992) have suggested a stage-wise disaggregation scheme to reduce 
the number of parameters involved in direct disaggregation. However, the method is 
based on the assumption that the upper level model is autoregressive of order one 
[AR(1)], which may not be true after the first stage for seasonal to sub-seasonal 
disaggregation. Disaggregation models of Lane (1982) and Lin (1990a, b) are also based 
on the assumption that the annual model is AR(1). In some cases, this assumption may 
not be satisfied. For instance, the annual flow of the St. Lawrence river at Ogdensburg, 
New York, modelled by Hipel and McLeod (1994) is AR(3) with the second parameter 
being zero. Furthermore, Lin’s model has an unnecessarily excessive number of 
parameters and requires huge computer memory, and Lane’s condensed model does not 
preserve the additive property of the generated data. 
 
We intend to extend the MR disaggregation scheme so that it becomes suitable for an 
annual autoregressive process of any order. Necessary equations of parameter estimation 
for higher order processes are derived to bring in moment consistency and to preserve 
additive property of the generated data. The technique for disaggregation of an annual 
event into its seasonal events is addressed first in details, and then seasonal to sub-
seasonal disaggregation procedure is outlined very briefly. It is to be mentioned here that 
another disaggregation technique known as the method of fragments (Srikanthan and 
McMahon, 1982; Porter and Pink, 1991; Maheepala and Perera, 1996), has been 
proposed for hydrologic and water resources applications, which is not covered here as 
the approach is not based on sound mathematical principles and does not work as well as 
the method discussed below. 
 
2.2 Model Formulation and Parameter Estimation 
 
Let  be the annual value of a variable to be partitioned into s  sub-divisions of . 

 has been generated with an appropriate AR model. It is assumed that both variables 
tX tY

tX
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are normally distributed with zero mean. The MR disaggregation model can be written 
as: 
 

1−++= tttt CYBAXY ε          (1) 
 
where,  is a column vector of dimension s  containing seasonal values of year tY t ,  

is a single-element vector containing annual value of year 
tX

t , tε  is a column vector of 

dimension  containing independent standard normal variables, and  is a column 
vector whose dimension  depends on the number of 

s 1−tY
)(P Y ’s from immediately 

preceding X  included for preservation. ,  and C  are parameter matrices of 
dimension , 

A B
1×s ss ×  and Ps × , respectively. The difference between the MR and VS 

models is that the last term of the former in equation (1) is not included in the latter. 
Lane’s condensed model differs from the MR model in that both  and C  are diagonal 
matrices and  has the same dimension as . Also, there is a difference in the actual 

elements of  between the two models. 

B
1−tY tY

1−tY
 
For moment estimation of the parameters ,  and C , equation (1) is post-multiplied 
with ,  and  and after that expected values are taken to obtain, respectively, 

A B
T
tX

T
tY 1−

T
tY

 
)1(T

XYXX
T
XY CA γγγ +=         (2) 

YYXYYY CA γγγ += )1()1(         (3) 

)1(T
YY

T
XYYY CBBA γγγ ++=        (4) 

 
where, UVγ is the covariance of the general vectors  and the transpose of , and tU tV

)1(UVγ  is the covariance between tU  and the transpose of 1−tV . The superscript T  
indicates the transpose of a matrix. In equations (2) to (4), there are five mathematical 
moments: XXγ , XYγ , XY )1(γ , YYγ  and YY )1(γ . However, the moment XXγ  is 
completely specified by the annual model. So, there are four moments for estimation 
from three equations, which creates the potential problem of moment inconsistency. 
These equations were originally proposed by Mejia and Rousselle, and if used without 
any adjustment, none of the four moments will be preserved (Lane, 1982; Lin, 1990a, b). 
If we closely look at the model in equation (1), we find that there is no direct link 
between t  and 1−tY  in the model. Thus, the moment XYX )1(γ  can be blamed for the 
inconsistency (Lane, 1982) and needs to be corrected. This can be done using an annual 
autoregressive model: 
 

tptpttt aXXXX ++++= −−− φφφ LL2211      (5) 

where, kφ  is the AR coefficient at lag k . t  is a stochastic random shock component 
with zero mean, constant variance and no serial correlation (white noise). 

a

 
Post-multiplying equation (5) by  and thereafter substituting 

1−−−−−

T
tY 1−

++= ktktktkt CYBAXY ε  from equation (1) successively for 1,,2,1 −= pk LL  
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X  and Yinto those terms in which the time indices of  are not identical, and finally 
taking expected values we obtain: 
 

T
p i

CAji ∑∑ ∑
−

+−+=
1

* )()1( γφγφγφγ      (6) 

ion be

 m

T
p

i
XYi

i j
XXiXYXY

== = 22 1
1

 
The superscript * is introduced to indicate corrected estimate. This equation is an 
original derivation in this study. The equation can be used for any annual AR process 
including a constrained process. If the order of the annual model is one, the second and 
third terms of equation (6) disappear and the equat comes identical to Lane’s 
correction for AR(1) process. Use of equations (2), (3), (4) and (6) results in 
mathematically consistent oments. However, as )1(XYγ  has been modified, the 
generated seasonal data no longer maintains the additive property. Lane has suggested 
further adjustment for )1(YYγ  to preserve ad

1
XYXX γγγ −−   

ditivity: 
 

)]1()1()1()1( **
XYYXYYYY γγγ +=     (7) 

 
Using these adjusted )1(*

XYγ  and )1(*
YYγ , in place of )1(XY

[

γ  and )1(YYγ  respectively, in 
equations to (4)  c(2) , an   par stimates, which 

ill preserve the additive property of generated seasonal data and reproduce historical 
we obtain mathematically consistent ameter e

w
moments XYγ  and YYγ . 
 
The parameter estimation technique for a higher order AR process differs from a simple 
AR(1) process in that direct solution is not possible since equation (6) contains the 

arameters  and . To obtain the parameter values, the following iterative stages of 
estimation are required: 
 

(i) Estimat

 A Cp

e )1(XYγ  from historic data and take it as a preliminary value of 

 equations (2) and (3); 
om equation (6); 

and 
*
XYγ

solution of  for a given may be obtained from 
quation (4) with either principal component analysis (Anderson, 1960) or Cholesky 

ithout any prior 
nowledge of annual model in a similar way assuming that seasonal data follows a PAR 

s

)1(*
XYγ ; 

*(ii) Obtain )1(YYγ  from equation (7) using )1(*
XYγ  and then obtain A  and C  

from
(iii) Using the values of A  and C  of step (2), obtain  fr)1(*

XYγ

(iv) Repeat steps (2) to (3) until convergence occurs in )1( . 
 
After estimation of A  and C , the T

 

B BB  
e
decomposition (Healy, 1968). 
 
Seasonal to sub-seasonal disaggregation model can be developed w
k
process. This further disaggregation process i  briefly outlined below: 
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Let  be the value of a variable for year t  and season s  and it has to be partitioned stY ,

into more than one sub-seasonal values of onal to sub-seasonal st ,

disaggregation model for season 
Z . The seas

s  can be written as: 
 

1,,,, −++= stsstsstsst ZCBYAZ ε        (8) 

The notations have their us
multiplications of equation ing 

 
        (9) 

+ Zss CA γ
 

here,  and  are, respectively, the lag-0 and lag-1 periodic covariance 
between  and the transpose of . Note the diff

ns (3 c  
 mo

 

,,
)(

2,21,1, ++++= −−− φφφ LL     (12) 

where,  is the AR coefficient for season 

 
ual meaning and are easily understood from the context. Post-

 (8) with T
stY , , T

stZ 1, −  and T
stZ ,  and thereafter tak

mathematical expectation results in, respectively, 

)1()()()( Ts
YZs

s
YYs

Ts
YZ CA γγγ +=

)1)()( )1()1( −= s
Z

s
YZ

s
ZZ γγ         

          (10) 
)1()()()( Ts

ZZs
T
ss

s
YZs

s
ZZ CBBA γγγ ++=         (11) 

 

(

)(s
UVγ )1()(s

UVγ

stU ,  stV ,

w
erence in the last term between 

equatio ) and (10). To maintain mathematical consisten y in the generated moments,
periodic del for season s  is used: 

stpst
s
pst

s
st

s
st aYYY )()(Y

 
)(s

kφ s  at lag 

 mentioned ear

ost-multiplying equation (12) by  and substituting 

k . sta ,  has the same property as  

lier. 
 
ta

P T
stZ 1, −

1,,,, −−−−−−−− ++= kstkskstkskstkskst ZCBYAZ ε  from equation
 into those terms in which the time indices for 

 (8) successively for 
pk ,,2,1 LL= Y  and  are not 

p

i

i

j

js
YY

s
i

s
YZ

ss
YZ Aji
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−

=
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22

1

1
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1
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model. For p lowing ca

Z
identical, and finally taking expected values we obtain: 
 

T
is

is
YZ

s
i

T
js C −+

−
− ∑+ 1

)()( γφ    (13) 
p

i

This equation is applicable for a periodic AR model of any order including constrained 
reservation of additivity, the fol  adjustment n be made: 

 
)]1()1([)1()1( )()*(1)()()()*( s

YZ
s
YZ

s
YY

s
ZY

s
ZZ

s
ZZ γγγγγγ −+= −       (14) 

 
If a given season s  has a PAR model of order k , and preceding seasons 

LL,2,1 −− ss  have models of order 1,,2,1 LL−− kk  respectively, then the 
disaggregation parameters can be obtained directly without iteration. For example, if the 

onth of May is PAR(2) and fo e parameters for 
e disaggregation model of May can be obtained directly using  and  of already 

known April model. If the model for May is PAR(3), for April is PAR(1) or PAR(2), and 

model for the m r April is PAR(1), then th
th A C
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for March is PAR(1), then the disaggregation parameters for May can also be obtained 
 using A  and C  of April and March, which are already knodirectly wn. 

ble for the period October 1948 to December 
000. Mont  flow generated in Mondal and Wasimi (2005a) with PAR model is 

in 86). Furthermore, both analytical and simulation results from 
search in the last two decades (Vecchia et al., 1983; Obeysekera and Salas, 1986; 

sea na an

e o

vity property m ecadal dat  and ) were 

 
 
3. Application of the proposed disaggregation model to the Ganges river 

for generation of decadal flows from monthly flows 
 
The Ganges river, which flows through China, India, Nepal and Bangladesh, is one of 
the largest rivers in the world. Its total length is about 2510 km and the catchment area is 
about one million km2. The river has a vital role in shaping the socio-economic 
conditions of Bangladesh and India, and any scheme to model the river-flow can be 
extremely beneficial. The disaggregation scheme developed in this paper is applied to 
the Ganges at Farakka in India. The selection of Farakka station is due to its most 
downstream location with natural flow. Any station downstream of Farakka has 
regulated flow mainly controlled by the GWT for sharing January-May flows between 
Bangladesh and India. Farakka is located about 17 km upstream from the Bangladesh-
India border and significant diversion of the Ganges water from Farakka began on April 
21, 1975. Inflow data at Farakka is availa
2 hly
disaggregated here into decadal flows, and only dry season flow (November-May) is 
disaggregated as that flow alone is currently considered important for water resources 
planning and management in Bangladesh. 
 
The strategy of generating annual flow first, and disaggregating into decadal flows 
subsequently, was not adopted in this study because the Ganges annual flows are weakly 
auto-correlated and strongly cross-correlated with a number of variables (see Mondal 
and Wasimi, 2005b, and the references therein). Logically therefore, generation of 
annual flow would require that all cross-correlated variables be generated with their 
appropriate models. This complicates the data generation process and involves a huge 
number of parameters, which is usually avoided in practice. Furthermore, finding 
suitable time series models for some predictors may not be possible. For example, the 
autocorrelation function of NIÑO 3.4 sea surface temperature, which has correlation 
with the Ganges annual flow, does not decay quickly and shows no identifiable pattern 
even after non-seasonal and/or seasonal differencing though its time-sequence plot 
appears to be stationary. Also, no standard technique is presently available to initialise 
the required seasonal values to start the data generation process in a disaggregation 
framework. Preservation of season-to-season flow characteristics is more important than 
annual characteristics for planning and management of water resources in the Ganges 
river basin as it is an intra-year system. Intra-year systems generally refill each year 
(McMahon and Me , 19
re
Bartolini et al., 1988; Lin and Lee, 1992) suggest that significant gain in parameter 
estimation can be achieved using so l data d their model, rather than using annual 
data and its model. 
 
To develop decadal models from seasonal models and without using the annual model, 
the periodic parameter matrices sA , sB  and sC  for each month were estimated using 
equations (13), (14), (9), (10) and (11). For each month, flow of the last decad f 
immediately preceding month was considered in the vector 1, −stZ  of equation (8). To 

preserve the additi , logarith ic d a ( stZ , 1, −stZ
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multiplied with corresponding number of days in a decade to obtain monthly data ( ) 
before estimating the model parameters. The estimated parameters for December  
were, respectively: 

⎡ 2101.0 ⎡ 005946.0 ⎡

stY ,

 to May

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

3634.0
3561.0
2805.0

DA   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
=

01633.03566.0
01633.00195.0
003371.0

DB  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

1371.0
0733.0

2104.0
DC

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

3962.0
3333.0
2705.0

JA
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−=

02398.04139.0
02398.01137.0
005276.0

JB  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

1617.0
0071.0

1688.0
JC   

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

3499.0
4040.0
2461.0

FA  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−=

02703.03188.0
02703.00925.0
004113.0

FB  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=
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FC  

⎥
⎥
⎦

⎤

⎢
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⎣

⎡
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3437.0
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⎣
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−−
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004658.0
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⎥
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⎢
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⎣

⎡

−
−=

2657.0
0723.0

3380.0
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

4314.0
3424.0
2262.0

AA   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−=

02961.04993.0
02961.00392.0
005385.0
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

3134.0
0273.0

3407.0
AC  

⎥
⎥
⎦⎢

⎢
⎣

=
4505.0
3394.0MA  

⎥
⎥
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⎣ −−

=
04904.07406.0
04904.01460.0MB  

⎥
⎥
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⎢
⎣−

⎤ ⎤ ⎤
−
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s the measured flow for the last decade of October was not available, the VS model 
was used for disaggregation of November flow. The parameter matrices for November 
were: 
 

⎡ 4026.0 ⎡

=
2335.0
0746.0MC  

 
A

⎥
⎥
⎦⎢

⎢
⎣

=
2765.0
3209.0NA   

⎥
⎥
⎦⎢

⎢
⎣ −−

⎤ ⎤
−

005000.0

lways zero, m of the three elements of vector is always zero. These 
dis

=
01773.03617.0
01773.01383.0NB  

 
From the values of the parameter matrices above, it can be seen that the sum of the three 
elements of vector sA  is always one, the sum of each column elements of matrix  is sB
a  and the su s

results indicate that the proposed periodic aggregation model is capable of preserving 
the additive property of the generated sub-seasonal data. 
 
Independent standard normal variables, st ,

C  

ε ’s, required in the disaggregation process 
were generated using random number seeds different from those used in monthly flow 
generation in Mondal and Wasimi (2005a). The 200 synthetic traces of monthly flow 
generated with the PAR model in Mondal and Wasimi were then disaggregated into 
decadal flow using above estimated parameter values and generated standard normal 
random numbers. Important statistics of the disaggregated decadal flow were computed 
for each sequence and the average of each statistic was obtained from the 200 values. 
They are presented in Table 1 along with their historical values. The first, second and 
third row entries for each month in columns two and three in the table are the 
correlations between the total flow of a month and its first, second and third decadal 
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flows, respectively. The first, second and third row entries in columns four and five are 

wo earlier months 
 the disaggregation parameter estimation algorithm. This may have caused some of the 

ifferences between the observed and generated correlations in the table. In spite of this 
lim
 
 

Table 1 
 importa and obser al and 

al-d s of the Gange rak
 

y-Deca l-Decad

the correlations between the first and second, the second and third, and the third and first 
decadal flows of a month, respectively. 
 
It is seen from the table that the proposed periodic disaggregation model can preserve the 
correlation between concurrent monthly and decadal flows and between one decadal 
flow to another of a month quite well. The decadal flow for November was not properly 
generated as the VS model was used. Also for December, a PAR(1) model was used for 
estimation of disaggregation parameters for this month instead of the full model which 
has three significant lags (see Mondal and Wasimi, 2005a). The use of the full model 
requires the availability of decadal data for June-October. Therefore, decadal data for 
November-December were not properly generated. This may have some effects on the 
generated data for January to May as each month was linked to one or t
in
d

itation, the proposed disaggregation scheme has worked very well. 

Some nt correlations of the generated ved concurrent monthly-decad
decad ecadal flow s river at Fa ka 

Monthl dal Correlation Decada al Correlation Month 
ed ed Observ Generated Observ Generated 

 
Nov 

0.989 
0.996 
0.985 

0.990 (.985   .995) 
0.997 (.995   .999) 
0.987 (.980   .994) 

0.978 
0.984 
0.951 

0.980 (.970   .991) 
0.987 (.979   .995) 
0.957 (.936   .979) 

 
Dec 

0.980 
0.995 
0.973 

0.975 (.961   .989) 
0.993 (.989   .997) 
0.963 (.943   .983) 

0.972 
0.961 
0.912 

0.964 (.943   .984) 
0.949 (.921   .976) 
0.885 (.826   .944) 

 
Jan 

0.945 
0.989 
0.964 

0.941 (.909   .973) 
0.988 (.982   .994) 
0.963 (.945   .981) 

0.915 
0.951 
0.836 

0.908 (.860   .957) 
0.949 (.924   .973) 
0.823 (.741   .911) 

 
Feb 

0.959 
0.988 
0.966 

0.955 (.930   .980) 
0.987 (.980   .994) 
0.963 (.943   .983) 

0.924 
0.951 
0.868 

0.918 (.874   .963) 
0.947 (.917   .976) 
0.857 (.784   .929) 

 
Mar 

0.969 
0.994 
0.967 

0.968 (.950   .987) 
0.993 (.989   .997) 
0.967 (.950   .985) 

0.958 
0.954 
0.881 

0.957 (.931   .982) 
0.953 (.927   .978) 
0.880 (.816   .943) 

 
Apr 

0.930 
0.988 
0.933 

0.927 (.891   .963) 
0.987 (.980   .995) 
0.932 (.897   .966) 

0.908 
0.909 
0.747 

0.904 (.856   .952) 
0.908 (.861   .956) 
0.740 (.627   .853) 

 0.925 0.926 (.889   .964) 0.906 
May 0.970 

0.938 
0.970 (.952   .988) 
0.938 (.901   .975) 

0.857 
0.757 

0.907 (.858   .956) 
0.857 (.774   .939) 
0.761 (.642   .880) 

Note: The values within parentheses are 95% confidence limits. 
 
 
Decadal inflows at Farakka were generated first at transformed unit of natural logarithm 
of zero periodic mean. The inverse process of demeaning and transformation was 
followed thereafter to obtain flows in original units. To further check the adequacy of the 
proposed disaggregation scheme, generated decadal inflow at Farakka was divided 
between Bangladesh and India according to the GWT of 1996. Bangladesh share thus 
obtained was assumed to be available to Bangladesh without any modification in-
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between Farakka and Bangladesh-India land border, a distance of about 17 km. The 
assumption is realistic in view of the GWT, which assures in Article-III that the water 
released to Bangladesh at Farakka shall not be reduced downstream by India, except for 
reasonable uses not exceeding 5.66 m3/s.  For each year and each sequence of available 
flows to Bangladesh, the quantity of water that can be constantly supplied throughout the 
dry season was estimated. This estimation included a possible reservoir on the Ganges 
within Bangladesh with a capacity of 909 Mm3 (WARPO, 2001). Average maximum 

ossible constant supply for each year was estimated from 200 sequences, and is given in 

80 percent, the maximum 
ossible constant supply value was 77.84 Mm  per day when observed data were used 

and 78.02 Mm3 when generated data were used. These results support the argument that 
the data ge
 

um possible constant supply throughout the dry  
season from the Ganges barrage 

ecadal (10-day) flows for the Ganges 
ver from PAR model generated monthly flows. The comparison between observed and 

p
Figure 1 along with the 95% confidence limits. For comparison, possible constant supply 
that could be maintained if historical sequence was used is also shown.   
 
It is seen from the figure that use of observed and generated data resulted in similar 
constant supply values. At an exceedence probability of 

3p

neration-disaggregation process was appropriate. 

40

60

80

100

120

140

160

180

0.0 0.2 0.4 0.6 0.8 1.0

Po
ss

ib
le

 C
on

st
an

t S
up

pl
y 

(M
m

3 /d
ay

)

Exceedence Probability

historic generated

Fig. 1. Maxim

 
4. Conclusions 
 
Over the past, many disaggregation schemes have been proposed. Many such schemes 
failed to preserve the autocorrelation structure of the process. In this paper we 
investigate into disaggregation and sub-disaggregation of annual stream-flows and 
present mathematical techniques to preserve the correlation structure even for processes 
which are of higher order than AR(1). Specifically, we have shown that when seasonal 
flows are generated with PAR models instead of with a disaggregation model, 
mathematically consistent moment equations can be developed for generation of sub-
seasonal flows from seasonal flows. The proposed model is capable of preserving the 
first and second moments between concurrent upper- and lower-level flows and between 
lower-level flows themselves. The periodic version of the model has been used to 
generate 200 historic-length synthetic traces of d
ri

confidence limits
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generated flow statistics and possible reservoir supplies corroborated the fact that the 

 

Hos

Obe

Srik s. Journal of Hydrology, 38, 
71-80. 

proposed coupled modelling scheme works well. 
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