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Abstract 

 

In this study, the shear-wave velocity of soil is modeled using seven cutting-edge machine learning 

procedures, comprising decision trees, multilayer perceptron artificial neural networks, random forests, 

ridge regression, support vector regressors, K-Nearest Neighbour, and extremely gradient boosting. 

The hyper-parameters of these algorithms are optimized utilizing the randomized search cross-

validation (RSCV) algorithm. The mean average error, root mean square error, and R-squared values 

are applied as evaluation indicators to assess the efficiency of optimized machine learning procedures 

on a dataset with 9335 data. The comparison shows that the RSCV approach is effective in the hyper-

parameter tuning and that the optimized machine learning procedures have tremendous prospect to 

evaluate the shear-wave velocity of soil. Among the seven OMLs used for the testing dataset, SVR and 

MLP display relatively acceptable performance (R2 = 0.7220 and 0.7216, respectively). Both RF (R2 = 

0.7183) and XGB (R2 = 0.7138) exhibit performance that is moderately satisfactory. It has been also 

found that the two input parameters SPT-N value and depth are almost equally important. SVR and 

MLP efficiency is compared to that of the current models. It is found that the OML models such as 

SVR and MLP outperform the existing models. 

 

© 2023 The Institution of Engineers, Bangladesh. All rights reserved. 

Keywords: Shear-wave velocity (VS), SPT-N value, optimized machine learning methods, randomized search 

cross-validation (RSCV) algorithm. 

 

 

1. Introduction 

An essential component of the application of geotechnical and seismic engineering is the 

determination of the shear wave velocities (VS) of soils. In ground response analysis, which 

assesses the dynamic behavior of soils during earthquakes, this relationship is crucial. 

Because it significantly affects the ground motion amplification, the top 30-m soil layer's 

seismic shear wave velocity is recognized as a crucial element in earthquake engineering. 

Additionally, investigations on analysis of liquefaction, soil layering, including location-
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specific subsurface modeling all makes use of the shear wave velocity of geomaterials. Since 

direct measurement of shear-wave velocity is costly and necessitates the use of cutting-edge 

equipment in an environment free from traffic and industrial noise, many researchers have 

developed correlation equations of VS with various soil indices over the years in different 

parts of the world (Ohta and Goto, 1978; Lee, 1992; Kuo et al., 2011; Pérez-Santisteban et al., 

2016; Sil and Haloi, 2017; Thokchom et al., 2017; Lu and Hwang, 2020; Bandyopadhyay et 

al., 2021; Tasmiah and Ansary, 2023). Depth-based correlations equations have been 

developed earlier by many researchers' such as Boore and Joyner (1997), Klimis et al., 

(1999), Wang and Wang (2016), and others.  

 

Also, a number of researchers (Cornou et al., 2016; Daag et al., 2022; Sil and Haloi, 2017; 

Thokchom et al., 2017; Lu and Hwang, 2020; Bandyopadhyay et al., 2021) from various 

fields of study have developed an empirical link between the penetration resistance, or N 

value from SPT, and shear-wave velocity, over the years. However, the N-value by itself 

cannot adequately describe the shear wave velocity. There have been many methods (Ohta 

and Goto, 1978; Lee, 1992; Kuo et al., 2011; Lu and Hwang, 2020; Bandyopadhyay et al., 

2021) proposed to improve such mathematical models by using additional elements like soil 

type and depth derived from the ground surface. 

 

The first multivariable analysis method was put forth in the study by Ohta and Goto (1978) as 

an alternative to empirical equations. Numerous researchers (Ohta and Goto, 1978; Lee, 1992; 

Kuo et al., 2011; Pérez-Santisteban et al., 2016; Tasmiah and Ansary, 2023) used multiple 

regression analysis and took into account depth and N-based regression equations. If the kind 

of soil and the impact of geology are originally explored, Ohta and Goto (1978) and Lee 

(1992) both found that "depth" rather than the N-value is the crucial parameter in a correlation 

equation. Effective overburden pressure was introduced into the calculation by Chapman et 

al., (2006). According to Kuo et al., (2011) study, the regression model should be chosen 

using the maximum coefficient of correlation R2 between Vs as well as N or depth. 

 

Kim et al., (2020) used artificial neural networks (ANN) to predict the SPT-N value at the 

non-drilling investigation points through patterns which is studied by multi-layer perceptron 

and error back-propagation algorithms using the minimum geotechnical data. Motahari et al., 

(2022) used SPT-N value results collected from north-east Iran to establish relationships for 

estimating the relative density in a sandy soil through artificial neural network and statistical 

analysis. Utilizing a k-Nearest Neighbor (k-NN) machine learning algorithm, Galupino and 

Dungca (2022) developed a novel method for forecasting typical SPT-N values for each 

Barangay/Zone of Phillipines. Latitude, longitude, and depth of the borehole were used as 

input parameters, while the SPT-N values were used as an output parameter. Hossain et al., 

(2022) used machine learning models like Multiple Linear Regression (MLR), Support 

Vector Regression (SVR), and Artificial Neural Network (ANN) algorithms to approximate 

the angle of internal friction of silty sand (SM) of Bangladesh by using SPT-N values, the 

grain size analysis results, the depth of sample collection. 

 

It is observed from the above studies that very limited researches have been undertaken using 

machine learning models to estimate a few soil parameters from SPT-N values and other soil 

properties. None has used machine learning techniques to estimate shear-wave velocity of 

soils from SPT-N values and depth. Only However, there are still a number of issues that 

require correct resolution before applying the ML techniques for estimating shear-wave 

velocity of soils from SPT-N values and depth, such as (1) The viability of other methods has 

not been extensively investigated, and only a small number of sophisticated ML algorithms 

have been used in soil density estimate, (2) before using ML algorithms on datasets, it is 

essential to correctly adjust their hyper-parameters and (3) there is still a need for an 
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organized, thorough comparison of the existing ML techniques. The efficacy of modern ML 

algorithms when used to estimate shear-wave velocity of soils from SPT-N values and depth 

may differ significantly, necessitating further research.  

 

This paper employs seven optimized machine learning (OML) techniques in a comparative 

manner, utilizing the programming language Python, to fill a gap in the existing papers 

concerning the soil unit weight. The decision tree (DT), K-Nearest Neighbour (KNN), 

extreme gradient boosting (XGB), multilayer perceptron artificial neural network 

(MLPANN), RIDGE regression (RIDGE), random forest (RF), and support vector machine 

(SVM) are the seven ML algorithms are used for this purpose. In this study, a recently 

collected 378 SPT-PSlog collocated points having 9335 datasets (6160 for sand and 3175 for 

clay) were used. The depth of the soil sample collected (D), SPT-N values (N) are the input 

features of the algorithms and will be discussed in the data processing section.  

 

Mean absolute error (MAE), root mean square error (RMSE), and R-squared value (R2) are 

used as performance indicators for evaluating the efficiency of the seven ML methods. 

Investigations on the comparative significance of important input variables for shear-wave 

velocity of soils were also conducted. The limitations of many existing methods are resolved 

by the current study, which can more effectively estimate the shear-wave velocity of soils 

than is currently done. 

 

2.  Methodology 

The shear-wave velocity of soils and its affecting variables are investigated in this study using 

six ML algorithms. The hyper-parameters of these seven algorithms are optimized utilizing 

the randomized search cross-validation (RSCV) algorithm. The seven ML algorithms and 

RSCV are briefly described in this section. 

 
Table 1  

Correlations developed between shear-wave velocity of soils and SPT-N values and  

depth of soil in the past years 
 

Author(s) 
No of  

Data Point 
Soil Type Equation R2 

Ohta and Goto (1978) 300 All 𝑉𝑠 = 61.62𝑁0.254𝐷0.222 0.6724 

Lee (1989) 88 

CL/All 𝑉𝑠 = 74.44𝑁0.16𝐷0.25 0.78 

CL/Keelung 𝑉𝑠 = 71.52𝑁0.08𝐷0.29 0.83 

CL/Tanshuei 𝑉𝑠 = 58.56𝑁0.13𝐷0.37 0.92 

ML/All 𝑉𝑠 = 73.70𝑁0.14𝐷0.26 0.88 

SM/All 𝑉𝑠 = 57.97𝑁−0.01𝐷0.46 0.86 

Lee (1992) 

126 SM 
𝑉𝑠 = 76.16𝑁0.076𝐷0.313 0.776 

𝑉𝑠 = 68.77𝑁0.075(𝐷 + 1)0.340 0.779 

265 CL 
𝑉𝑠 = 95.72𝑁0.124𝐷0.210 0.785 

𝑉𝑠 = 86.10𝑁0.116(𝐷 + 1)0.244 0.788 

100 ML 
𝑉𝑠 = 90.57𝑁0.140𝐷0.205 0.829 

𝑉𝑠 = 82.79𝑁0.134(𝐷 + 1)0.233 0.830 

365 CL/ML 
𝑉𝑠 = 93.54𝑁0.125𝐷0.213 0.798 

𝑉𝑠 = 84.53𝑁0.118(𝐷 + 1)0.246 0.801 

Kuo et al. (2011) 719 
Sand 𝑉𝑠 = 93.11𝑁0.242𝐷0.136 0.671 

Clay/Silt 𝑉𝑠 = 114.55𝑁0.168𝐷0.143 0.685 

Pérez-Santisteban et al. (2016) 500 All 𝑉𝑠 = 71.05𝑁0.259𝐷0.382 0.760 

Tasmiah & Ansary (2022) 

9335 All 𝑉𝑠 = 63.07𝐷0.360𝑁0.120 0.7171 

6160 Sand 𝑉𝑠 = 59.61𝐷0.321𝑁0.165  0.6844 

3175 Clay 𝑉𝑠 = 63.29𝐷0.383 𝑁0.111  0.7428 
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Table 2  

Summary of the dataset 
 

 D (m) SPT-N Value Vs (m/s) 

Count 9335 9335 9335 

Mean 21.2 30.4 272.9 

STD 13.0 24.2 113.3 

Min 1.5 1 15 

Max 79.5 100 850 

 
2.1  Decision Tree (DT) 

A supervised machine learning technique which may be utilized to both classification and 

regression applications is the decision tree (DT) model. It is a predictive model that, in an 

effort to produce precise predictions, splits the data recursively depending on feature values to 

create a tree-like structure. A decision tree model works as follows: (a) Tree structure: The 

decision tree model consists of nodes and edges. Each edge in the graph reflects a potential 

value or range of values for each node's corresponding feature or attribute. The tree has a root 

node, and several internal and leaf nodes that fork from it. (b) Feature selection: A choice is 

made on the basis of a specific characteristic or attribute at every internal node of the tree. 

Typically, the decision is a binary split, which divides the information into two subsets 

according to a selected threshold or criteria.  

 

 
Fig. 1.  Locations of SPT/PSLOG tests performed in the DMDP area along with the geology.  
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The objective is to identify the splits that optimize the target variable's homogeneity or purity 

within each subset. (c) Recursive splitting: The splitting process continues recursively, 

creating child nodes for each split. The splitting criteria depend on the specific algorithm and 

objective. Common criteria include minimizing impurity measures such as entropy or Gini 

impurity for classification tasks, or minimizing MSE or MAE for regression tasks. (d) Leaf 

nodes and predictions: Once the splitting process reaches a stopping condition, usually based 

on a maximum tree depth or a minimum number of samples per leaf, the remaining nodes 

become leaf nodes. Each leaf node represents a predicted value or class label. For 

classification, the majority class label within the leaf is often used, while for regression, it can 

be the target variable's mean or median value for the leaf. (e) Prediction process: To make 

predictions, a new data point traverses the decision tree by following the split conditions at 

each internal node until it reaches a leaf node. The predicted value or class label associated 

with that leaf node is then assigned as the final prediction. 

 

Key characteristics and considerations of the DT models are: (a) Interpretable: Decision trees 

provide human-readable rules that can be easily understood and visualized. The splits and 

decisions made by the tree can be interpreted to gain insights into the associations between 

the features and the desired outcome. (b) Non-linear relationships: Complex non-linear 

associations between the features and the target factor can be identified through decision 

trees. (c) Overfitting: Decision trees have the tendency to overfit the training data if not 

properly controlled. Techniques like pruning, setting a maximum depth, or using 

regularization parameters can help prevent overfitting and improve generalization to unseen 

data. (d) Feature importance: Decision trees can provide information about the importance or 

relevance of different features in predicting the target variable. Features that are closer to the 

root of the tree and appear in multiple splits are considered more important. (e) Handling 

missing values: Any values that are missing in the data can be handled by decision trees by 

assigning them to the most appropriate split based on the available information. 

 

 
Fig. 2.  Correlation matrix of one output variable and two input variables 

 

Decision trees are widely used in various domains due to their interpretability, ease of 

handling, and ability to handle both categorical and numerical features. However, they may 

not perform as well as more complex models on certain datasets, and their performance can 

be affected by outliers and imbalanced classes. It's worth noting that decision trees can be 
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extended and improved through ensemble techniques such as random forests, and gradient 

boosting, which integrate multiple decision trees to achieve better predictive performance. 

 
Table 3  

Hyper-parameter tuning 
 

ML algorithms Optimum value 

DT 'criterion': 'poisson', 'max_depth': 3, 'max_features': 7, 'min_samples_leaf': 7 

XGB subsample': 1.0, 'reg_lambda': 0, 'reg_alpha': 0.5, 'n_estimators': 200, 'max_depth': 6, 

'learning_rate': 0.1, 'colsample_bytree': 0.8 

KNN 'weights': 'uniform', 'p': 2, 'n_neighbors': 11 

MLP 'activation': 'relu', 'alpha': 0.015701864044243653, 'hidden_layer_sizes': 83, 

'learning_rate': 'adaptive', 'max_iter': 430, 'solver': 'lbfgs' 

RF max_depth=6, max_features=None, max_leaf_nodes=9, n_estimators=50 

RIDGE 'solver': 'cholesky', 'alpha': 0.20565123083486536 

SVR 'kernel': 'rbf', 'gamma': 1, 'C': 1 

 

2.2  Extreme Gradient Boosting (XGB) 

XGB is a standard machine learning technique known for its efficiency and efficiency in both 

regression and classification tasks. It uses a more sophisticated version of the gradient 

boosting architecture that utilizes an optimized algorithm and various regularization 

techniques to improve model accuracy and generalization.  

 

 
Fig. 3.  Pair panel of input and output variables.  

 

XGB model works as follows: (a) Gradient Boosting Framework: The foundation of XGB is 

the gradient boosting framework, which creates a powerful ensemble model by integrating a 

number of weak predictive models (usually decision trees). The goal of gradient boosting is to 
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continuously train models that minimize the errors produced by the past models. (b) 

Optimization Algorithm: XGB employs a highly optimized algorithm to efficiently build the 

ensemble of weak models. The algorithm leverages parallel processing and tree pruning 

techniques to decrease memory utilization and gear up the training process. (c) Regularization 

Techniques: XGB incorporates several regularization procedures to avoid overfitting and 

enhance the quality of generalization. Regularization methods include shrinkage (learning 

rate), this regulates how much each tree contributes to the total forecast, which add penalties 

to the model's complexity. (d) Tree Construction: XGB uses decision trees as base learners. It 

constructs trees in a greedy manner by iteratively splitting the data based on specific criteria, 

such as reducing the loss or maximizing the information gain. The tree construction process is 

guided by optimization objectives and constraints to find the best splits and create trees that 

capture important patterns in the data. (e) Feature Importance: XGB provides a measure of 

feature importance, which indicates the relative importance of each input feature in the 

prediction process. Based on how often a feature is utilized to divide the data among all the 

ensemble trees, feature significance scores are determined. (f) Hyperparameter Tuning: A 

variety of hyperparameters are available in XGB that can be adjusted to enhance the 

efficiency of the model.  

 

 
Fig. 4.  Methodological flowchart of this study. 

 

XGB offers a comprehensive hyperparameters that can be tweaked to optimize the model's 

performance. Hyperparameters govern various aspects of the algorithm, such as the learning 

rate, regularization factors, tree depth, subsampling ratio, etc. XGB has gained popularity for 
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its exceptional performance in machine learning competitions and real-world applications. It 

is capable of handling large datasets, capturing complex relationships, and providing accurate 

predictions. However, proper hyperparameter tuning and careful validation are important to 

achieve optimal results and prevent overfitting. 

 

2.3  K-Nearest Neighbour (KNN) 

A non-parametric supervised learning approach used for classification and regression 

applications is the k-nearest neighbors (KNN) model. Based on the similarity between a data 

point and its k nearest neighbors in the training data, this straightforward and understandable 

method provides predictions. Following are the several steps of the KNN algorithm: (a) Load 

the training data: The KNN algorithm starts by loading the labeled training data, which 

consists of input feature vectors and their corresponding target values. (b) Select the number 

of neighbors (k): The parameter k represents the number of neighbors to consider when 

making predictions. It is typically chosen based on experimentation and validation. (c) 

Calculate distances: The algorithm determines the distance between each test point and every 

other point in the training data for a particular test data point. While there are many other 

distance metrics, some of the most popular ones are Euclidean distance, Manhattan distance, 

and Minkowski distance. (d) Find the k nearest neighbors: The k training samples with the 

closest distances to the test point are chosen by the algorithm. This k nearest neighbors will 

contribute to the prediction for the test point. (e) Make predictions: The predicted value for 

the test point in regression tasks is often the average or weighted average of its k nearest 

neighbors' target values. For classification tasks, the predicted class is determined by the 

majority class among the k nearest neighbors. (f) Evaluate and repeat: Performance indicators 

like accuracy, mean squared error (MSE), and others can be used to assess the algorithm. To 

determine the optimal model configuration, the procedure can be repeated with other k values 

or distance measures. Key characteristics and considerations of the KNN algorithm are: (a) 

Non-parametric: Because it makes no assumptions about the distribution of the underlying 

data, KNN is a non-parametric algorithm. (b) Lazy learning: KNN is considered a lazy 

learning algorithm since it does not explicitly build a model during training. Instead, it simply 

stores the training data for reference during prediction. (c) Feature scaling: It is important to 

scale the input features before applying KNN, as features with larger scales can dominate the 

distance calculations. (d) Curse of dimensionality: KNN can suffer from the curse of 

dimensionality, where the performance deteriorates as the number of dimensions (features) 

increases. In high-dimensional spaces, the concept of distance becomes less meaningful. 

 
Table 4  

Statistical analyses of seven ML algorithms for all soils 
 

ML algorithms MAE RMSE R2 Ranking Clay R2 Sand R2 

DT 
Training 0.1915 0.2521 0.7079 7 0.7250 0.8019 

Testing 0.1916 0.2458 0.6838 7 0.7581 0.5730 

XGB 
Training 0.1812 0.2382 0.7394 4 0.7567 0.7109 

Testing 0.1842 0.2338 0.7138 4 0.7741 0.7103 

KNN 
Training 0.1761 0.2313 0.7542 1 0.7740 0.7314 

Testing 0.1874 0.2406 0.6970 6 0.7637 0.6856 

MLP 
Training 0.1812 0.2387 0.7381 5 0.7564 0.7033 

Testing 0.1809 0.2306 0.7216 2 0.7782 0.7204 

RF 
Training 0.1776 0.2335 0.7495 2 0.8036 0.7539 

Testing 0.1815 0.2319 0.7183 3 0.7602 0.6917 

RIDGE 
Training 0.1881 0.2478 0.7178 6 0.7363 0.6813 

Testing 0.1833 0.2342 0.7128 5 0.7657 0.6964 

SVR 
Training 0.1803 0.2379 0.7401 3 0.7582 0.7139 

Testing 0.1806 0.2304 0.7220 1 0.7796 0.6973 
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KNN is a versatile algorithm that can be used in various domains and is particularly useful 

when the decision boundaries are non-linear or when the training data has complex patterns. 

However, as the algorithm needs to calculate distances to all training points for each 

prediction, it can be computationally demanding for large datasets. 

 

 
Fig. 5.  RMSE values along with iterations on the training dataset. 

 

2.4  Multilayer Perceptron (MLP) Artificial Neural Network 

MLP artificial neural networks are a common tool for classification and regression among 

other machine learning problems. It draws inspiration from the design and operation of the 

human brain. The MLP is made up of numerous layers of neurons, which are interconnected 

nodes. Usually, there are three different types of layers. (a) A set of features or attributes may 

be received by the input layer as input data. (b) Layers between the input and output layers 

are considered hidden layers. Each neuron in a hidden layer takes information from the layer 

below and processes it before sending the results to the layer above it. The network can learn 

intricate representations and patterns in the input thanks to the hidden layers. (c) The 

network's ultimate output is produced by the output layer. 

 

The type of task determines how many neurons are present in the output layer. For example, 

in a regression task, there is typically a single neuron for predicting a continuous value, while 

in a classification task; there is one neuron per class for predicting class probabilities. The 

neurons in an MLP are connected by weighted connections, which determine the strength and 

importance of the information flowing between neurons. Each neuron generates an output by 

applying an activation function to the weighted sum of its inputs. In order to reduce the 

discrepancy between the projected outputs and the actual targets, the MLP modifies the 

weights of the connections during training. The weights are iteratively updated based on the 

computed error in order to do this using an optimization approach like gradient descent. 

Finding the ideal collection of weights is the goal in order to reduce prediction errors and 

increase the network's capacity to generalize to new inputs. A non-linear function, such as the 

hyperbolic tangent (tanh) function, rectified linear unit (ReLU) function, sigmoid function, 

may be employed as the activation function in an MLP. The network can learn intricate 

connections between the inputs and outputs thanks to non-linear activation functions. MLPs 

are known for their ability to approximate complex functions and learn non-linear forms in 

the data. 
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Fig. 6.  Regression plots for the training set of seven OML algorithms. 

(a) DT (R2=0.7079) (b) XGB (R2=0.7394) 

(c) KNN (R2=0.7542) (d) MLP (R2=0.7381) 

(e) RF (R2=0.7495) (f) RIDGE (R2=0.7178) 

(g) SVR (R2=0.7401) 
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Table 5 

Performance evaluation of the tested values versus earlier models and two ML algorithms 
 

Model Name R2 

Ohta & Goto (1978) 0.6802 

Pérez-Santisteban et al. (2016) 0.7048 

Tasmiah & Ansary (2022) 0.7157 

Present Study (SVR) 0.7331 

Present Study (MLP) 0.7458 

 

However, they can be susceptible to overfitting if not suitably regularized or if the network 

architecture is not appropriately designed. MLPs have become popular in various domains 

due to their flexibility, scalability, and effectiveness in handling complex datasets. They have 

been effectively used in a variety of machine learning applications, including time series 

analysis, natural language processing, image identification, and many more. 

 

2.5  Random Forest (RF) 

An ensemble learning technique called RF combines the predictions of multiple decision trees 

to get predictions that are more accurate. Both classification and regression tasks can be 

accomplished with this flexible and effective technique. RF method works as follows: (a) 

Ensemble Learning: Random Forest belongs to the family of ensemble learning methods, 

which combine multiple individual models to make collective predictions. In the case of 

Random Forest, the individual models are decision trees. (b) Decision Trees: Decision trees 

are predictive models that learn a series of hierarchical if-else rules based on the features of 

the data. Each decision tree makes predictions by following a track from the root node to a 

leaf node, where the final prediction is made. (c) Randomness and Diversity: Random Forest 

introduces randomness and diversity into the modeling process. Randomness is introduced by 

randomly selecting subsets of the original data for training each decision tree (bootstrap 

aggregating or bagging). Diversity is achieved by arbitrarily picking a subset of features for 

each split in the decision tree. (d) Voting and Aggregation: When making predictions, every 

decision tree in the Random Forest independently forecasts the target variable. For 

classification tasks, the class with the majority of votes among the trees is selected as the final 

prediction. For regression tasks, the average or median of the predicted values from all the 

trees is taken as the final prediction. (e) Feature Importance: Random Forest provides a 

measure of feature importance, indicating the comparative significance of each input feature 

in making predictions. The importance is calculated based on how much each feature 

contributes to the reduction of impurity or variance across all the decision trees. (f) Hyper-

parameter Tuning: There are several hyper-parameters in Random Forest that can be tweaked 

to enhance efficiency. The maximum depth of each tree, the quantity of trees in the forest, the 

amount of features taken into account for each split, etc. are some significant hyper-

parameters. Random Forest is known for its robustness, scalability, and capacity for handling 

high-dimensional data. It is less prone to over-fitting compared to individual decision trees 

and often yields better performance in terms of accuracy. However, like any algorithm, proper 

hyper-parameter tuning and careful validation are crucial to achieve optimal results. 
 

2.6  Ridge regression 

The Ridge method, also known as Ridge regression or Tikhonov regularization, is a 

regularization technique used in linear regression models. It helps to address the issue of 

multi-collinearity (high correlation between features) and reduce the impact of less important 

features on the model. Ridge method works as follows: (a) Objective Function: The objective 

function for linear regression includes a penalty term thanks to the Ridge technique. The 

objective function attempts to reduce the quantity of squared residuals, which gauges the 
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difference between expected and observed values. The penalty term is the L2 norm (squared 

values) of the coefficients multiplied by a regularization parameter (lambda or alpha). (b) L2 

Regularization: The L2 norm penalty in the Ridge method is the sum of the squared values of 

the coefficients.  
 

  

  

  

 
Fig. 7.  Regression plots for the testing set of seven OML algorithms.   

(a) DT (R2=0.6838) (b) XGB (R2=0.7138) 

(e) RF (R2=0.7183) 

(c) KNN (R2=0.6970) (d) MLP (R2=0.7216) 

(f) RIDGE (R2=0.7128) 

(g) SVR (R2=0.7220) 
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This penalty term discourages extreme values of the coefficients and encourages smaller, 

more spread-out values. It aids in managing the model's complexity and lessens the effects of 

multi-collinearity. (c) Shrinkage of Coefficients: The Ridge method shrinks the coefficients 

towards zero, reducing their magnitudes. The amount of shrinkage is controlled by the 

regularization parameter. A larger regularization parameter results in more aggressive 

shrinkage and smaller coefficients. (d) Multi-collinearity Handling: Ridge regression is 

particularly useful when dealing with datasets that have multi-collinearity, where features are 

highly correlated. By shrinking the coefficients, Ridge regression reduces the impact of 

highly correlated features and prevents them from dominating the model. (e) Bias-Variance 

Tradeoff: The Ridge method helps in striking a balance between bias and variance in the 

model. Increasing the regularization parameter increases the bias of the model but reduces its 

variance, while decreasing the regularization parameter has the opposite effect. Proper tuning 

of the regularization parameter is important to find the right balance for the given dataset. (f) 

Hyper-parameter Tuning: Ridge regression involves tuning the regularization parameter 

(lambda or alpha) to optimize the model's efficiency. Cross-validation techniques can be 

utilized to evaluate different values of the regularization parameter and select the optimal one. 

 

 
Fig. 8.  Relative variable importance for shear-wave velocity of soils.  

 

The Ridge method is widely used in various domains to handle multi-collinearity and improve 

the stability and generalization of linear regression models. By shrinking the coefficients, in 

the presence of strongly linked predictors, it aids in determining and ranking the most 

important features. 

 

2.7  Support Vector Machine (SVM) 

Notable supervised machine learning methods for classification and regression include 

Support Vector Machine (SVM). It is particularly effective in handling complex datasets with 

clear margin or separation between different classes. A SVM model works as follows: (a) 

Basic Concept: In a high-dimensional feature space, SVM seeks to identify the best 

hyperplane for classifying the data points. In binary classification, SVM seeks to find a 

hyperplane that maximizes the margin between each class's nearest data points. Support 

vectors are utilized to express these nearby data points. (b) Feature Space and Hyperplane: 

The feature space refers to the transformed space where the input data points are mapped 

using a kernel function. A hyperplane which most effectively divides the data points has been 

identified by SVM. In two dimensions, the hyperplane is a line, while in higher dimensions, it 

becomes a hyperplane. (c) Margin and Support Vectors: The margin is the gap between the 

nearest data points for each class and the hyperplane. SVM seeks to increase this margin, as a 

larger margin usually implies better generalization and robustness to new data. The data 

points represent the support vectors that lie on the margin or are misclassified. These points 
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influence the position and orientation of the hyperplane. (d) Linear and Non-linear 

Separation: SVM can handle both linearly separable and non-linearly separable data. For 

linear separation, a linear kernel (e.g., the linear function) is used to create a linear decision 

boundary. For non-linear separation, SVM utilizes kernel functions (for instance, a 

polynomial or a radial basis function) to translate the data into a space with more dimensions, 

where a linear separation is possible. (e) Training Process: Given a labeled training dataset, 

SVM determines the optimal hyperplane by solving an optimization problem. The 

optimization problem involves identifying the hyperplane that increases the margin while 

minimizing the classification errors. The solution is obtained by solving a quadratic 

programming problem or through convex optimization techniques. (f) Prediction: Once the 

optimal hyperplane is determined, SVM can predict the class label of new, unseen data points 

by evaluating which side of the hyperplane they fall on. Key characteristics and 

considerations of the SVM models are: (a) Versatility: SVM can handle both linear and non-

linear classification tasks. (b) Robustness: SVM is less prone to overfitting due to the margin 

maximization objective. (c) Kernel functions: The choice of kernel function can significantly 

impact SVM's performance and ability to handle complex datasets. (d) Model complexity: 

The complexity of the SVM model depends on the number of support vectors, which affects 

training and prediction time. SVM is frequently utilized in many fields, including image 

classification, text classification, and bioinformatics. Effectively separate classes and 

handling of high-dimensional data makes it a valuable tool in machine learning. 

 

2.8  Randomized Search Cross-Validation (RSCV) 

The term "Randomized Search CV" refers to cross-validation. It is a method for selecting 

models and tweaking hyperparameters in machine learning. Hyperparameters are settings 

made by the user prior to training a machine learning model rather than ones that are learned 

from the data. The rate of learning, the quantity of hidden layers in a neural network, or the 

regularization strength is a few examples of hyperparameters. To determine the ideal set of 

hyperparameters for a particular model, Randomized Search CV combines cross-validation 

and random sampling of hyperparameters. It operates by selecting a subset of hyperparameter 

combinations at random from a predetermined search space and assessing their effectiveness 

using cross-validation. Here is a detailed explanation of how Randomized Search CV 

operates: (a) Establish a search area: Indicate the range of values or distributions from which 

to sample the hyperparameters, (b) Randomly sample hyperparameter combinations: Pick a 

selection of hyperparameter combinations at random from the search space, (c) Evaluate each 

combination: Utilizing each combination of hyperparameters, develop and test the model. 

Typically, k-fold cross-validation is used for this, where the data is divided into k subsets 

(folds), the model is trained and assessed k times, and each time, a different fold is used as the 

validation set, (d) Choose the optimal combination: The performance metric (such as 

accuracy, precision, or recall) achieved during the cross-validation procedure should be used 

to determine the optimum hyperparameter combination (e) Train the model again: On the 

complete training dataset, train the model using the optimal combination of hyperparameters. 

Randomized Search CV rapidly explores a wide variety of hyperparameter combinations 

without analyzing all potential possibilities by using random sampling as opposed to an 

exhaustive grid search. This makes it appropriate in situations where the hyperparameter 

search space is huge or when there are not enough processing resources. In general, 

Randomized Search CV aids in automating the hyperparameter tuning process, enabling the 

choice of ideal hyperparameters for a machine learning model. 

 

3.  Preparations of data and interpretation 

In order to evaluate the shear-wave velocity of soils through a comparison analysis, seven ML 

procedures are utilized to the dataset of 9335 instances of SPT-N and corresponding shear-
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wave velocity values. These are collected from 378 collocated SPT and PS logs for shear-

wave velocity within the DMDP area of Bangladesh as shown in Figure 1. It should be noted 

that the dataset is fairly thorough and contains a wide range of metrics that are important for 

figuring out the shear-wave velocity of soils.  

 

  

  

 
Fig. 9.  Relation between actual and predicted value of shear-wave velocity of soils.  
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For determining shear-wave velocity of soils, it is critical to choose the factors that will have 

the biggest impact. As input characteristics, two variables are chosen, including depth (D), 

SPT-N values (N) are nominated as input parameters (see Table 2). Figure 2 shows the 

correlation matrix for the affecting variables as a heat map and Figure 3 shows the affecting 

variables as a pair panel. The correlation matrix displays the correlation coefficient between 

the variables, while the pair panel displays the histogram of individual variable and scatter 

plots between two variables. 

 

3.1  Data splitting and cross-validation 

To preserve the model's capacity to simplify while addressing the overfitting issue, in this 

work, around 80% of the instances are considered in the training set and 20% of specimens 

are allotted to the testing set utilizing arbitrary selection. It should be mentioned that before 

performing any modeling, we have normalized the dataset. The objective of normalization is 

to convert the dataset's values to a mutual scale without affecting variations in the value 

ranges. 
 

 
Fig. 10.  Measured and predicted shear-wave velocity of soils at testing stages.  

 

The predictive power of seven OML algorithms is assessed in this study using K-fold cross-

validation on the same data. The data can be subjected to cross-validation techniques to 

reduce the likelihood of overfitting and bias during selection in the ML approaches. The data 

is split into K equal-sized subsets for the K-fold CV. The single surviving subset of the K 

subsets is employed as the testing data, while the K - 1 subsets are utilized as training data. 

Then, this procedure is carried out K times using various subsets as the testing subset. In 

order to evaluate OML algorithms on a small sample of data, CV is a resampling approach. 

The 5-fold CV is the most common CV, which has been utilized in this study. 

 

3.2  Measures of performance 

The shear-wave velocity of soils (VS) is investigated between actual and estimated values 

using mean absolute error (MAE), root mean square error (RMSE), and R-squared value (R2) 

to show the accuracy of seven OML algorithms' estimation. The mean absolute error is the 

mean absolute error between actual and predicted values. The most often used metric for 

assessing models is the mean squared error. Here, the difference between actual values and 

anticipated values is squared, and the mean of those values is computed for each data point. 

The MSE can be a helpful statistic to employ when the dataset contains unforeseen values, 

either very high or low values. However, the MSE can either overstate or underestimate how 

awful the prediction is when dealing with noisy data, i.e., when the data are not completely 
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dependable. The RMSE is described as a root of MSE. A statistical parameter R-squared may 

be used to assess the accuracy of the fit which represents how narrowly an algorithm 

resembles the real data points. 

 

4.  Analysis findings 

This section discusses hyper-parameter tuning, an evaluation of seven ML methods for 

estimating the shear-wave velocity of soils, and the significance of influencing variables. 

Figure 4 depicts the process for shear-wave velocity of soils using OML approaches. Training 

and testing datasets are created from the initial dataset. Seven cutting-edge ML algorithms are 

optimized after being trained on the training dataset. Then, the OML models are utilized to 

the test dataset in order to compare their results. 

 

4.1  Hyper-parameter tuning results 

The hyper-parameters of every ML method which have been obtained through the 

randomized search cross-validation (RSCV) algorithm are shown in Table 3, along with their 

tuned values. Figure 5 displays the evolution of the root mean squared error value over the 

training dataset's iterations. Figure 5 shows that hyper-parameter adjustment, especially for 

MLP, SVR and XGB, has a significant impact on how well ML algorithms perform. 

 

4.2  Review and comparison of six machine learning models 

4.2.1  Training dataset results 

On the training data of 7468 shear-wave velocity of soils and corresponding SPT-N and 

depth, seven OML algorithms are used. The regression graphs for each of these techniques 

are displayed in Figure 6. Among the seven OMLs, KNN exhibits a relative better 

performance (R2 = 0.7542). The performance of RF (R2 = 0.7495), SVR (R2 = 0.7401), XGB 

(R2 = 0.7394) and MLP (R2 = 0.7381) are next. These are followed by RIDGE (R2 = 0.7178) 

and DT (R2 = 0.7079) showing relatively mediocre performances. 

 

4.2.2  Testing dataset results 

The shear-wave velocities of soils in the testing dataset are now estimated using seven OML 

models that were trained in the former section. Seven OML approaches' performance on 1867 

samples from the testing data—where no training procedure was applied—is assessed. Figure 

7 presents the regression graphs for the test set of seven OML models. The ranking of OML 

technique performance for the testing dataset is different from that for the training dataset, as 

shown by a comparison of Figures 6 and 7, and R-squared values also vary between the 

training and testing datasets. On the testing dataset, SVR and MLP display acceptable 

performance (R2 = 0.7220) and (R2 = 0.7216), respectively. The performance of RF (R2 = 

0.7183), XGB (R2 = 0.7138), and RIDGE (R2 = 0.7128) are next. These are followed by KNN 

(R2 = 0.6970) and DT (R2 = 0.6838) showing mediocre performances. 

 

4.2.3  Results comparison 

Each OML algorithm's mean absolute error, root mean squared error, and R-squared values 

for training and testing datasets are presented in Table 4. Each technique's performance 

ranking is also displayed. According to Table 4, KNN and DT, which are ranked first and last 

among OML models for training data, respectively obtain the uppermost and lowermost R-

squared values. Similarly for the testing datasets, SVR and DT are categorized first and last 

among OML algorithms for testing datasets, respectively. For testing datasets, MLP is ranked 

2nd and for the training datasets RF is ranked 2nd. The efficiency of OML procedures on the 

testing data is more significant to be taken into account as a utilization of each OML 
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algorithm meanwhile the testing data may be seen as an illustration of an actual situation. 

Considering depth and SPT-N value as independent variables and shear-wave velocity of soil 

as the dependent variable, a multiple linear regression equation has been developed recently 

by Tasmiah and Ansary (2022), where obtained R2 was 0.7171 for all soils. Using SVR and 

MLP ML algorithms, this R2 value has been increased to 0.7220 and 0.7216, respectively. 

Similarly, for sandy soil (6160 data), the obtained R2 by Tasmiah and Ansary (2022) was 

0.6844. In this study through using MLP and XGB ML algorithms, R2 value has been 

increased to 0.7204 and 0.7103, respectively. For clay soil (3175 data), the obtained R2 by 

Tasmiah and Ansary (2022) was 0.7428. In this study through using SVR and MLP ML 

algorithms, R2 value has been increased to 0.7796 and 0.7782, respectively. 

 

4.3  Results of variable importance 

The SVR exhibits the top relative efficiency in case of testing data, according to the 

comparison. In order to evaluate the significance of influencing parameters for the shear-wave 

velocity estimation of soils, SVR is used. The normalized values for variable importance are 

displayed in Figure 8. According to Figure 8, depth is the factor that has the biggest impact on 

estimating the shear-wave velocity of soils (score = 0.5432). The importance value of SPT-N 

value is 0.4568. That means the two input parameters are almost equally important. 

 

4.4  Comparison with existing correlations and ML algorithms 

In this section, previously established shear-wave velocity of soils versus SPT-N value 

correlations developed by Ohta and Goto (1978), Pérez-Santisteban et al., (2016) and 

Tasmiah and Ansary (2022) for all soil types have been used to predict shear-wave velocity of 

soils. Five predicted shear-wave velocity of soils from the above three correlations and two 

other predicted using SVR and MLP algorithms are then compared with the actual shear-wave 

velocity of soils (1869 tested values) in Figure 9. Table 4 presents the performance evaluation 

of the actual values with the three earlier models and the two ML algorithms (SVR and MLP). 

Figure 10 presents the actual and predicted shear-wave velocity of soils in the testing stages.  

 

Figure 11 displays the residuals plots of the five methods - three existing correlations and two 

ML algorithms. Figure 11b's negative residuals show that Pérez-Santisteban et al., (2016)'s 

model over predicts the shear-wave velocity of soils of the dataset. In contrast, the other 

methods such as Ohta and Goto (1978), Tasmiah and Ansary (2022), SVR and MLP ML 

algorithms show balanced accuracies, meaning predictions made by these models are 

relatively impartial and equally distributed above and below the observed values. These show 

that these four models are doing a fair job of capturing the fundamental patterns and trends in 

the data. 

 

4.5  Discussion 

This study's main advantage is its comparison and proposal of seven improved machine 

learning (ML) techniques for estimating the shear-wave velocity of soils. The following 

components of this study add to our understanding of the estimation of shear-wave velocity of 

soils and other geotechnical engineering fields: For regression problems in geotechnical 

engineering, (i) the optimized ML approaches are extremely promising, (ii) the stability and 

resilience of regression procedures may be effectively explored using MAE, RMSE, and R-

squared values, (iii) the strategy described in this work holds great promise for expanded use 

in other geotechnical engineering fields where regression issues are regularly encountered, 

and (iv) a few guidelines have been given for forecasting the shear-wave velocity of soils by 

applying ML algorithms. If more data can be collected, the efficiency of the suggested 

optimized ML models can be enhanced. 
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Fig. 11.  Relation between residuals and dataset numbers for different predicted shear-wave  

velocity of soils at testing stages.  
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5.  Conclusion and recommendations 

When laboratory testing cannot be done, empirical equations are employed to determine the 

engineering properties of soil. In-situ test findings and soil index features are frequently 

combined to create empirical relationships that offer cost-effective and non-destructive 

alternatives. The training dataset that is utilized to construct the algorithm affects how 

effective it is. In this study, the optimum model for predicting the shear-wave velocity of soils 

has been identified by a thorough evaluation of seven OML models, comprising DT, KNN, 

MLP, RF, RIDGE, SVR, and XGB. 9335 pieces of data make up the dataset used by the 

OML algorithms. As performance measure, a fivefold cross-validation is employed, along 

with mean average error, root mean square error, and R-squared. Following are some 

significant deductions: 

 

Randomized search cross-validation (RSCV) algorithm is a useful procedure for tweaking the 

hyper-parameters of ML models, in line with the optimal scores attained by ML algorithms 

across iterations. 

 

On the training dataset of 7468 shear-wave velocity of soils and corresponding SPT-N and 

depth, seven OML algorithms are used. Among the seven OMLs, KNN exhibits a relative 

better performance (R2 = 0.7542). The performance of RF (R2 = 0.7495), SVR (R2 = 0.7401), 

XGB (R2 = 0.7394) and MLP (R2 = 0.7381) are next. These are followed by RIDGE (R2 = 

0.7178) and DT (R2 = 0.7079) showing relatively mediocre performances. The shear-wave 

velocities of soils in the testing dataset are also estimated using seven OML algorithms that 

were trained. Seven OML approaches' performance on 1867 samples from the testing data—

where no training procedure was applied—is assessed. The ranking of OML technique 

performance for the testing dataset is different from that for the training dataset, and that R-

squared values also differ between the training and testing data. On the testing dataset, SVR 

and MLP display acceptable performance (R2 = 0.7220) and (R2 = 0.7216), respectively. The 

performance of RF (R2 = 0.7183), XGB (R2 = 0.7138), and RIDGE (R2 = 0.7128) are next. 

These are followed by KNN (R2 = 0.6970) and DT (R2 = 0.6838) showing mediocre 

performances. 

 

The depth is the factor that has the biggest impact on estimating the shear-wave velocity of 

soils (score = 0.5432). The importance value of SPT-N value is 0.4568. That means the two 

input parameters are almost equally important. The efficiency of SVR and MLP is matched 

with the models of Ohta and Goto (1978), Pérez-Santisteban et al., (2016) and Tasmiah and 

Ansary (2022) on the testing dataset of the present study. Pérez-Santisteban et al., (2016)'s 

model over predicts the shear-wave velocity of soils of the dataset. In contrast, the other 

methods such as Ohta and Goto (1978), Tasmiah and Ansary (2022), SVR and MLP ML 

algorithms show balanced accuracies, meaning predictions made by these models are 

relatively impartial and equally distributed above and below the observed values. These show 

that these four models are doing a fair job of capturing the fundamental patterns and trends in 

the data. 
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